Avik Mondal

avik.mondal.2014@gmail.com

Personal Site: avik2007.github.io/mondal-personal-site/ LinkedIn: https://www.linkedin.com/in/avikmondal/ Github: https://github.com/avik2007?tab=repositories

EDUCATION

University of Michigan, Ann Arbor

College of Literature, Science, and the Arts (LSA) Program: Physics Ph.D. Expected Graduation Date: June 2025

University of California Santa Barbara

College of Creative Studies (CCS) Major: CCS Physics Degree: Bachelor of Science (May 2018) Ann Arbor, MI August 2018– June 2025

Santa Barbara, CA September 2014 – June 2018

RESEARCH EXPERIENCE

Arbic Lab (Computational Physical Oceanography)

Graduate Student Research Assistant

- Analyzed ocean and atmosphere simulation output from MITgcm/GEOS5 (NASA coupled climate simulation)
- Developed numerical and theoretical methods to analyze spatio-temporal spectra in fluids (observational data or simulation output)
- Studied theory of non-local, turbulent interactions and how they drive temporal variability of passive tracers in incompressible fluids

Lubensky Lab (Statistical Physics of Developmental Biology)

Graduate Student Research Assistant

- Studied morphogenesis using theory and simulations, with a particular focus on pattern formation in fruit fly wings
- Developed simulations of growing tissues that incorporated mitosis, apoptosis, and periodic boundary conditions with heterogeneous cell properties
- Analyzed large ensembles of high-resolution microscopy images of fly wings
- Developed novel image registration and analysis methods for high-resolution images of biological tissue

Carlson Lab (Complex Systems)

Undergraduate Researcher, Worster Fellow

• Developed computationally efficient methods for analyzing the structure and mechanics of trabecular (human) bone

Santa Barbara, CA

March 2017-August 2019

Ann Arbor, MI

May 2021 – Present

Ann Arbor, MI May 2019-Present

- Used graph-theoretic methods to develop structural metrics that can act as indicators of strength in trabecular bone
- Developed code to analyze microCT bone data

PAPER INVOLVEMENTS

In Development:

- D. Blanco-Obregon, Avik Mondal, David K. Lubensky, Pierre Leopold, Daniel McCusker. Manuscript on imaging *Drosophila* wing hairs and consequent pattern analysis. *Manuscript In Development*.
- Avik Mondal, David K. Lubensky, and Jakob Sheridan. "Compression Induced Fluidization in Vertex Models of Epithelial Tissue." *Manuscript In Development*.

Under Review

 Avik Mondal*, Andrew J. Morten*, Brian K. Arbic, Glenn R. Flierl, and Robert B. Scott. "Spatio-temporal spectral transfers in fluid dynamics." *Manuscript Under Review*. (arXiv:2405.02259v2)

Accepted

- Avik Mondal, Chantal Nguyen, Xiao Ma, Ahmed E. Elbanna, and Jean M. Carlson. "Network models for characterization of trabecular bone." *Phys. Rev. E* **99**, 042406 (2019)

* co-first authors

TECHNICAL SKILLS

Current: C++, MATLAB, Python (including experience with Xarray, DASK, Pandas, GeoPandas), Mathematica, LaTeX, MS Office, High Performance Computing with PBS and SLURM workload managers, FIJI

Previous: JAVA, Arduino, Abaqus

CODEBASES

FlyAnalysis (Python, Jupyter Notebook) (private repository, contact for access)

- Allows user to estimate shape and size of cells on fly wings from fly wing hair data.
- Contains tools to do statistical analysis of wings of different genotypes and vertex model output designed to simulate fly wings

Lubensky-Lab-Vertex-Models (C++, MATLAB, Python, Jupyter Notebook) (private

repository, contact for access)

- Implements the vertex model of morphogenesis, a molecular dynamics-like model of cells and tissues that models cell dynamics in epithelial tissues
- Allows for simulations of $\sim 10^5$ cells, mitosis (cell division and proliferation), apoptosis, tissue growth, and cells with spatially varying properties

CoupledOceAtmo (Python, Jupyter Notebook)

- Contains code to estimate temperature variance budgets in the oceanic and atmospheric mixed layer in NASA's MITgcm/GEOS5 coupled simulation
- Designed for large calculations in NASA's Pleiades cluster

Skel-Analysis (MATLAB)

• Contains tools to analyze 3D reconstructions of trabecular bone. Allows users to convert trabecular bone VOI's into network and FEM models. These models can be analyzed for structural and mechanical properties.

TALKS/PRESENTATIONS

APS March Meeting 2025 (in-person talk)	March 2025
APS March Meeting 2024 (in-person talk)	March 2024
AGU Ocean Sciences Meeting 2024 (in-person talk)	February 2024
AGU23 (in-person poster presentation)	December 2023
APS March Meeting 2023 (in-person talk)	March 2023
APS March Meeting 2023(in-person presentation)	March 2023
APS March Meeting 2022 (virtual presentation)	March 2022
AGU Ocean Sciences Meeting 2022 (virtual presentation)	February-March 2022
APS March Meeting 2018 (in-person presentation)	March 2018

UNDERGRADUATE MENTORING

Dom Ross: Machine Learning Models for Fly Wing Hair Segmentation June-August 2023 Hitanshu Patel: Fly Wing Registration by Schwarz-Christoffel Transforms May-August 2023 Reid Tang, Yulin Zhang: Time Dependent Tension on Vertex Model Edges January-June 2025

TEACHING EXPERIENCE

Physics 121, Physics of Architecture

Graduate Student Instructor

• Instructed undergraduate students in the architecture program in introductory physics concepts using laboratory demonstrations

Physics 411, Computational Physics

Graduate Student Instructor

- Grader for student assignment
- Held office hours to help students debug and fix Python code, used for numerical methods relevant to Physics

Earth 222/223, Intro to Oceanography/ Lab

Graduate Student Instructor

- Grader for student lab assignments
- Facilitated student discussion in main lecture class

Earth 421, Physical Oceanography

Graduate Student Instructor (3 semesters)

• Grader for homework and midterm

August 2022 – December 2022

Ann Arbor, MI

January 2021 – April 2021

Ann Arbor, MI

August – December 2020, 2022, 2023

Ann Arbor, MI January 2023 – April 2023

Ann Arbor, MI

- Provided students with support for Python homework exercises and preparation for midterm and final
- Organized class field trip to NOAA field station (2022, 2023)
- Substitute lecturer on several occasions

PSTAT 412, Introduction to Upper-Level Statistics

Graduate Student Instructor, grader (2 semesters) 2020-December 2020

- Grader for midterms, homework, and final
- Held office hours

Physics 406, Statistical Mechanics and Thermodynamics

Graduate Student Instructor

- Taught statistical mechanics, thermodynamics, and the prerequisite mathematical and physical concepts to third and fourth-year physics majors.
- Coordinated with head instructor to create curriculum for sections
- Held office hours and ran weekly sections
- Substituted as lecturer when needed

Physics 141, Intro Mechanics Labs

Graduate Student Instructor

• Taught fundamental concepts of classical mechanics to first year undergraduate engineering students using laboratory demonstrations and Python simulations

Physics 119B, Statistical Mechanics

Undergraduate Learning Assistant

• Helped students work through statistical mechanics problems during recitation

•

Ann Arbor, MI

August 2018-December 2018

Ann Arbor, MI

August 2019 – May 2020, September

January 2019 – May 2019 mathematical

Ann Arbor, MI

Santa Barbara, CA

January 2018 – April 2018